General-to-Speci c Model Selection for Subcategorization Preference
نویسندگان
چکیده
This paper proposes a novel method for learning probability models of subcategorization preference of verbs. We consider the issues of case dependencies and noun class generalization in a uniform way by employing the maximum entropy modeling method. We also propose a new model selection algorithm which starts from the most general model and gradually examines more speci c models. In the experimental evaluation, it is shown that both of the case dependencies and speci c sense restriction selected by the proposed method contribute to improving the performance in subcategorization preference resolution.
منابع مشابه
Maximum Entropy Model Learning of Subcategorization Preference
Abstract This paper proposes a novel method for learning probabilistic models of subcategorization preference of verbs. Especially, we propose to consider the issues of case dependencie~ and noun class generalization in a uniform way. We adopt the maximum entropy model learn~,g method and apply it to the task of model learning of subcategorization preference. Case dependencies and noun class ge...
متن کاملGeneral-to-Specific Model Selection for Subcategorization Preference
This paper proposes a novel method for learning probability models of subcategorization preference of verbs. We consider the issues of case dependencies and noun class generalization in a uniform way by employing the maximum entropy modeling method. We also propose a new model selection algorithm which starts from the most general model and gradually examines more specific models. In the experi...
متن کاملLearning Probabilistic Subcategorization Preference by Identifying Case Dependencies and Optimal Noun Class Generalization Level
This paper proposes a novel method of learning probabilistic subcategorization preference. In the method, for the purpose of coping with the ambiguities of case dependencies and noun class generalization of argument/adjunct nouns, we introduce a data structure which represents a tuple of independent partial subcategorization frames. Each collocation of a verb and argument/adjunct nouns is assum...
متن کاملUNCERTAINTY DATA CREATING INTERVAL-VALUED FUZZY RELATION IN DECISION MAKING MODEL WITH GENERAL PREFERENCE STRUCTURE
The paper introduces a new approach to preference structure, where from a weak preference relation derive the following relations:strict preference, indifference and incomparability, which by aggregations and negations are created and examined. We decomposing a preference relation into a strict preference, anindifference, and an incomparability relation.This approach allows one to quantify diff...
متن کاملLearning Probabilistic Subcategorization Preference and its Application to Syntactic Disambiguation
This paper proposes a novel method of learning probabilistic subcategorization preference. In the method, for the purpose of coping with the ambiguities of case dependencies and noun class generalization of argument/adjunct nouns, we introduce a data structure which represents a tuple of independent partial subcategorization frames. Each collocation of a verb and argument/adjunct nouns is assum...
متن کامل